
brian@security-bits.de ~~ www.security-bits.de ~~ @BadgeWizard

Day One with a
TTIG-868

Hardwear.io
2019

About Me

● Brian
○ @BadgeWizard
○ brian@security-bits.de

● Security Researcher / Hacker
○ Officially: “Incident Response”

● Hardware-, Embedded-, a bit of
Telko-Security

“Day One” - A Single Day

● Security is
○ Expensive
○ Hard
○ Takes a long time

● Typical excuses why devices are not tested
for security

● But…
○ Quick security checks, like presented here, are

easy, simple and at least ensure a baseline

Meanwhile, in the UK

● No default passwords
● Implement a vulnerability disclosure

policy
● Keep software updated
● Securely store credentials and

security-sensitive data
● Communicate securely
● Minimise exposed attack surfaces
● Ensure software integrity

Requirements
● Ensure that personal data is protected
● Make systems resilient to outages
● Monitor system telemetry data
● Make it easy for consumers to delete

personal data
● Make installation and maintenance of

devices easy
● Validate input data

ToDo List For The Day

● Do homework
○ Search for documentation and

understand it
● Read Manual
● Set up device (according to manual)

○ Document with screenshots and notes
● Use device

○ Sniff communication and evaluate
● Check communication for flaws

○ MitM, plaintext, attack where possible!
● Portscan
● Assess open ports

● Open device
○ Check for available debug ports
○ Extract and analyze data?

● Find firmware if available
○ Search for typical issues

● Write a documentation

● Share Results

Equipment

● Laptop
● VM with Wireshark, DNS, DHCP, NMAP,

Burp
○ Basic networking

● WiFi Router
○ G.Li AR300m

● Logic analyzer
○ Saleae Logic Pro 16
○ A cheap one usually also does the job!

● Oscilloscope
○ Reichelt uni-T 2 channel digital scope

● Multimeter

● Soldering iron
● Microscope
● Camera
● SOIC Clips

○ They’re helpful but often cause problems
and should be swapped regularly

● Cables, Solder, Tweezers and whatever :)

TTIG - 868

● The Things Industries LoRaWAN Indoor
Gateway

○ Running on 868MHz for the European market

● Initially released Q1 2019 at a dev
conference

○ Slowly but surely reaching the typical distributors
since the Summer months

● ?First LoRa BTS using Semtech’s new Basic
Station concept / model

Long Range

● Radio modulation / technology for long
range, low power radio communication

○ (868MHz/Europe, 915MHz/US)

● Developed since 2008 (Cycleo)
● Now run by LoRa Alliance
● LoRa WAN -> Specific protocol designed

upon LoRa

Publications on LoRa

○ 2016, Syscan360: Robert
Miller, MWR - LoRa Security:
Building a secure LoRa
solution

○ 2016, GRCon16: Matt Knight,
Bastille Research - Reversing
and Implementing the LoRA
PHY with SDR

First Steps

● Runs from mains or USB-C
○ Sadly USB is dead

● Hold setup button to start WiFi AP mode
○ Config mode

● Connect to network
○ Network key is printed on back of device
○ Seems random (at least my two samples)

● http://192.168.101.4

Config Menu - Version Information

Config Endpoints

Just a slight lack of input validation

● Only open port seems to be 80/TCP

● A ESP8266 does not like to be scanned!

Portscan

● New approach for managing LoRa
gateways and getting traffic from the field
to the cloud

● Developed by Semtech
● Consists of 2 protocols

○ LNS
○ CUPS

LoRa Basic Station

https://lora-developers.semtech.com/resources/tools/basic-station/welcome-basic-statio
n/

CUPS

● Configuration and Update Server
● Simple JSON based protocol
● Used to fetch configuration

○ Communication endpoints
○ Credentials
○ Certificates
○ Updates

● Information fetched based on
○ Router ID / model

field description
cupsUriLen Length of CUPS URI (cun)
cupsUri CUPS URI (cups.uri)
tcUriLen Length of LNS URI (tun)
tcUri LNS URI (tc.uri)
cupsCredLen Length of CUPS credentials (ccn)
cupsCred Credentials blob
tcCredLen Length of LNS credentials (tcn)
tcCred Credentials blob
sigLen Length of signature for update

blob
keyCRC CRC of the key used for the

signature
sig Signature over the update blob
updLen Length of generic update data

(udn)
updData Generic update data blob

Response

● 4 Options
● No authentication!

○ “All three files *.trust, *.cert, and *.key SHALL be missing
or empty.”

● TLS Server Authentication
○ Server key stored in local .trust file

● TLS Server and Client Authentication
○ Using local .trust and client cert in .key file

● TLS Server Authentication and Client
Token

○ Using .trust file and an Authorization header in
.key file

CUPS Security

“Station supports four
different authentication

modes. Each authentication
mode is configured by

providing specific files with
credentials being defined by

three types of files…”

https://lora-developers.semtech.com/resources/
tools/basic-station/authentication-modes/

A Quote

LNS Protocol

● LoRaWAN® Network Server Protocol
● Endpoint set by default or fetched via

CUPS
● Same security measures as CUPS
● Used for

○ Radio Configuration
○ Transportation of payload data
○ Remote Shell
○ Time Synchronisation

https://lora-developers.semtech.com/resources/
tools/basic-station/the-lns-protocol/

LNS Snippets

Router Config Message
{
 "msgtype" : "router_config"
 "NetID" : [INT, ..]
 "JoinEui" : [[INT,INT], ..] // ranges: beg,end inclusive
 "region" : STRING // e.g. "EU863", "US902", ..
 "hwspec" : STRING
 "freq_range" : [INT, INT] // min, max (hz)
 "DRs" : [[INT,INT,INT], ..] // sf,bw,dnonly
 "sx1301_conf": [SX1301CONF, ..]
 "nocca" : BOOL
 "nodc" : BOOL
 "nodwell" : BOOL
}

SX1301CONF Object
{
 "radio_0": { .. } // same structure as radio_1
 "radio_1": {
 "enable": BOOL,
 "freq" : INT
 },
 "chan_FSK": {
 "enable": BOOL
 },
 "chan_Lora_std": {
 "enable": BOOL,
 "radio": 0|1,
 "if": INT,
 "bandwidth": INT,
 "spread_factor": INT
 },
 "chan_multiSF_0": { .. } // _0 .. _7 all have the same structure
 ..
 "chan_multiSF_7": {
 "enable": BOOL,
 "radio": 0|1,
 "if": INT
 }
}

PCAP :)

MitM?

● CUPS cert is self signed
● LNS cert is a Let’s Encrypt Cert

● Created certificates with same settings
○ Redirected traffic

●

MitM Failed :(

1970-01-01 00:00:08.389 [CUP:VERB] Retrieving update-info from CUPS https://rjs.sm.tc:9191...
1970-01-01 00:00:08.455 [AIO:DEBU] ssl_tls.c:4426 MBEDTLS[1]: x509_verify_cert() returned -9984
(-0x2700)
1970-01-01 00:00:08.460 [AIO:DEBU] ssl_tls.c:6849 MBEDTLS[1]: mbedtls_ssl_handshake() returned -9984
(-0x2700)
1970-01-01 00:00:08.465 [AIO:ERRO] [2] Send failed: X509 - Certificate verification failed, e.g. CRL, CA or
signature check failed
1970-01-01 00:00:08.476 [AIO:DEBU] [2] HTTP connection shutdown...
1970-01-01 00:00:08.486 [SYS:INFO] sys_inState - Ignoring state transition: 5
1970-01-01 00:00:08.488 [CUP:INFO] Interaction with CUPS failed - retrying in 1m

● No open ports to be found

● T ESP8266 still does not like to be
scanned!

Portscan

Teardown

The Open Device

Device Overview

● Based on an ESP8266
○ Own circuit, not a module
○ 4MB SPI memory, Winbond 25Q32
○ Hidden under removable shields

● UART Header
● LoRa module in mSATA format

○ Semtech SX1308

ESP8266

Winbond
25Q32 I2C Port

Expander

WiFi Antenna

LoRa
Antenna

CP2101n
USB-UART

UART

UART

● Prints boot log, various status information
● RX is sadly down :-(

→ Looking at a UART sniffs in slides isn’t fun :)

1970-01-01 00:00:00.006 [SYS:DEBU] ======= VER
======
1970-01-01 00:00:00.008 [SYS:DEBU] Station Version
2.0.0(minihub/debug)
1970-01-01 00:00:00.010 [SYS:DEBU] Version Commit
e17c5af
1970-01-01 00:00:00.014 [SYS:DEBU] Station Build
2018-12-06 09:30:37
1970-01-01 00:00:00.020 [SYS:DEBU] Firmware Version
2.0.0
1970-01-01 00:00:00.025 [SYS:DEBU] FW Flavor ID
semtech0
1970-01-01 00:00:00.031 [SYS:DEBU] Model
minihub
1970-01-01 00:00:00.039 [SYS:DEBU] ======= SYS ======
1970-01-01 00:00:00.041 [SYS:DEBU] CPU Freq 80 /
80000000 / 80000000
1970-01-01 00:00:00.048 [SYS:DEBU] Random Number
896671054
1970-01-01 00:00:00.053 [SYS:DEBU] Reset cause 0
1970-01-01 00:00:00.058 [SYS:DEBU] Booting USER_BIN 1
1970-01-01 00:00:00.063 [SYS:DEBU] FW start addr
0x00001000
1970-01-01 00:00:00.069 [SYS:DEBU] SDK version
2.0-dev(9ec59b5)
1970-01-01 00:00:00.075 [SYS:DEBU] Free Heap Startup
56160 bytes

A few “mistakes” on the USB circuit
VCC

GND

● Typical approach: Saleae & SniffROM
○ Connect SOIC clip
○ Sniff communication with Saleae LA
○ Use SniffROM to reconstruct memory content
○ → No soldering

● Failed! :-(
○ Signals on LA looked good
○ Device didn’t boot anymore

■ Status LED only glimed

● Hooked up the Scope
○ Failed again

Flash Memory

Flash Memory

● EPS8266 has 200R resistors on the SPI
lines

● Removed the resistor, add a piece of wire

● Works! :)

Flash Memory

● ESP8266 has no internal memory
○ No secure storage, all assets are on the flash
○ ESP32 in contrast has internal memory for keys

■ Have a look at the MINiBREW Craft System
in the HardPwn Corner

● Flash is run in QuadSPI
○ But...my decoder went on strike :-(

Firmware

● Sadly firmware isn’t Open Source
○ But there is a reference / test implementation
○ https://github.com/lorabasics/basicstation

● Available code contains
○ C code for Basic Station
○ (partially Python) Code for eval / test

environment

● Perfect for future test benches

Basic Station is a LoRaWAN Gateway implementation,
including features like

● Ready for LoRaWAN Classes A, B, and C
● Unified Radio Abstraction Layer supporting

Concentrator Reference Designs v1.5 and v2
● Powerful Backend Protocols (read here and

here)
○ Centralized update and configuration

management
○ Centralized channel-plan management
○ Centralized time synchronization and

transfer
○ Various authentication schemes (client

certificate, auth tokens)
○ Remote interactive shell

● Lean Design
○ No external software dependencies

(except mbedTLS and libloragw/-v2)
○ Portable C code, no C++, dependent

only on GNU libc
○ Easily portable to Linux-based gateways

and embedded systems
○ No dependency on local time keeping
○ No need for incoming connections

https://doc.sm.tc/station
https://doc.sm.tc/station/gw_v1.5.html
https://doc.sm.tc/station/gw_v2.html
https://doc.sm.tc/station/tcproto.html
https://doc.sm.tc/station/cupsproto.html

Lame Code Analysis

● Detailed code analysis takes a long time
○ But there always is a compromise one can take

● Quickly grepping for bad/risky functions
○ Or using an applicable tool helps

● Flawfinder
○ Simple python code analysis tool

Flawfinder Output

./fs.c:282: [4] (buffer) strcpy:
 Does not check for buffer overflows when copying to
destination [MS-banned]
 (CWE-120). Consider using snprintf, strcpy_s, or strlcpy
(warning: strncpy
 easily misused).
 strcpy(wb, cwd);
./fs.c:645: [4] (race) access:
 This usually indicates a security flaw. If an attacker can
change anything
 along the path between the call to access() and the file's
actual use
 (e.g., by moving files), the attacker can exploit the race
condition
 (CWE-362/CWE-367!). Set up the correct permissions (e.g.,
using setuid())
 and try to open the file directly.
 return access(fn, mode);

Flawfinder Results

● Found 100 issues
○ Memcpy, strcpy, statically sized arrays, issues

with not \0 terminated String

● Obviously “issues” are just potentials
○ I.e. strcpy issues can be prevented by proper

validation of data

● Manually checked quite a few of them
○ All looked fine

Flawfinder Output

./fs.c:282: [4] (buffer) strcpy:
 Does not check for buffer overflows when copying to
destination [MS-banned]
 (CWE-120). Consider using snprintf, strcpy_s, or strlcpy
(warning: strncpy
 easily misused).
 strcpy(wb, cwd);
./fs.c:645: [4] (race) access:
 This usually indicates a security flaw. If an attacker can
change anything
 along the path between the call to access() and the file's
actual use
 (e.g., by moving files), the attacker can exploit the race
condition
 (CWE-362/CWE-367!). Set up the correct permissions (e.g.,
using setuid())
 and try to open the file directly.
 return access(fn, mode);

● No default passwords
○ Check, except for the WiFi password

which should be acceptable
● Implement a vulnerability disclosure

policy
○ ?

● Keep software updated
○ At least they can

● Securely store credentials and
security-sensitive data

○ Well….probably not
● Communicate securely

○ Check
● Minimise exposed attack surfaces

○ Check

Requirements
● Ensure software integrity

○ Done during the update
● Ensure that personal data is protected

○ Hum, hard to say
● Make systems resilient to outages

○ Out of scope
● Monitor system telemetry data

○ Backend, so didn’t test
● Make it easy for consumers to delete

personal data
○ Reset button

● Make installation and maintenance of
devices easy

○ Yep
● Validate input data

○ Not yet perfect

Summary

● TTIG - 868 is a typical, simple IoT Device
○ No notable physical protection measures

● Configuration WiFi is done nicely
○ Unique key
○ Shutdown after 15 minutes
○ Output of SSID needs to be cleaned though

● Basic Station Protocol implements all
necessary security options

○ Support for TLS
○ TLS actually works :)
○ No authentication without TLS

● Parsing might cause issues on other
implementations

It’s
not

insecure!

A single day?

● Admittingly I spread a days work over
multiple days

● But all in all I only took me about 10h

● Quick tests are easily possible, when you
have your bits together

Outlook

● I need to fix and publish my QuadSPI
decoder

○ Change the CUPS Server on the TTIG

● ...give a bunch of other IoT devices a single
day pentest

brian@security-bits.de ~~ www.security-bits.de ~~ @BadgeWizard

Thanks for your time
Questions?

