
brian@security-bits.de ~~ www.security-bits.de ~~ @BadgeWizard

brian@security-bits.de ~~ www.security-bits.de ~~ @BadgeWizard

Practical Attacks against
Cellular Interfaces

IT-Tage 2019

About Me

● Brian
○ @BadgeWizard
○ brian@security-bits.de

● Security Researcher / Hacker
○ Officially: “Incident Response”

● Hardware-, Embedded-, a bit of
Telko-Security

Introduction

● Usage of cellular networks is still growing
● Evermore devices are planned to be using

5G in some way
● There a still a lot of “myths” concerning

cellular security
● The content is this a quick reminder, that

cellular is easy! :)

Network Structure Overview

Source: https://osmocom.org/projects/cellular-infrastructure/wiki/Osmocom_Network_In_The_Box

Equipment

● BTS
○ SDR based with USRP (~1200€) or bladeRF (~400

€)
○ Actual BTS i.e. nanoBTS (~150€ from eBay)
○ More professional: SysmoBTS by Sysmocom

● Laptop / Virtual Machine
○ Linux box

Cable Setup

● Just playing with RF signals is against the
law in most countries
○ In Germany the Bundesnetzagentur looks after

the topic

● Thus direct cable connections can be used
to not actually work with RF
○ The BTS has an RX and a TX antenna
○ The duplexer brings them onto a single cable
○ And also contains an attenuator

Software Setup

● Follow instructions for OpenBSC,
OsmoSGSN, OsmoGGSN
○ Free Open Source software by Osmocom project

● Install osmo-SIP connector and Asterix
● Write a bunch of configuration
● Setup simpleHLR
● Start it all up

● A few hours following instructions

Calling

● Calls from client to client on network work
natively

● External calling can be enabled by using
osmoSIP-connector and Asterix

● Asterix can then be expanded using a SIP
uplink

[incoming]
exten => abcdefe0,1,Log(Notice, "Incoming call via sipgate from
${CALLERID(num)}. exten is currentl$
exten => abcdefe0,2,Answer(),
exten => abcdefe0,n,Background(welcome)
exten => abcdefe0,n,Background(silence/9)
exten => abcdefe0,n,Hangup()
exten => _1337,1,Playback(tt-weasels)
exten => _1337,n,Hangup()
exten => _9090XXXXX,1,Log(Notice, "Incoming call for ${EXTEN}
from ${CALLERID(num)}.")
exten => _9090XXXXX,2,DIAL(SIP/${EXTEN}@192.168.1.20:5069)
exten => _9090XXXXX,n,Hangup()

include = Dialing-Errors

[internal]
exten => 1337,1,Answer
exten => 1337,2,Playback(tt-weasels)
exten => 1337,3,Hangup
exten => _9090XXXXX,1,DIAL(SIP/${EXTEN}@192.168.1.20:5069)
exten => 2222,1,DIAL(SIP/${EXTEN}@192.168.1.20:5069)
exten => _0!X.,1,Set(CALLERID(num)=SIPID)
exten => _0!X.,2,Dial(SIP/*31${EXTEN}@sipgate,30,trg)
exten => _0!X.,3,Hangup
include = Dialing-Errors

SMS

● Natively supported by the backend
● Can be sent via

○ SimpleHLR webinterface
○ Control socket

■ Optionally automated by a python script
○ Via SMPP interface

import telnetlib
import time

Host="127.0.0.1"
Port="4242"

tn = telnetlib.Telnet(Host,Port)

tn.write("subscriber id 1 sms sender id 1 send Hello there!\n")

tn.write("exit")
tn.write("exit")

IP Connectivity

● IP connectivity is possible by using
OsmoSGSN and OsmoGGSN

● Supports custom APNs, authentication
etc.

● Full IP traffic can then be forwarded to the
internet
○ Or intercepted...

Addresses & IDs & Numbers

● IMEI
○ International Mobile Equipment Identity
○ “Unique” device ID

● IMSI
○ International mobile subscriber identity
○ Unique SIM card ID

● Phone Number
○ Allocated by cellular network

■ Usually allocated by IMSI

● IP Address
○ Allocated by the network (GGSN)

#

Phone Number

● Within our own network the number /
extension is set depending on the IMSI

● It is configured in the HLR
○ Can be edited via console or directly in the table

● Thus, when a device joins our network we
can call it, send it SMS
○ But we do not know it’s normal phone number

Availability

● While a device is in our network it can only receive SMS and calls
from within our network
○ As we usually do not have an uplink (i.e. via SS7)

● Using a SIP uplink we can enable outgoing calls
○ But the the source number is the number of our SIP uplink

● IP connectivity works perfectly
○ Unless it is limited to certain APN

Access Point Name

● The APN is the name of the first gateway a cellular client uses to
connect to the internet
○ I.e. internet.telekom.de, web.vodafone.de

● Thus kind of a virtual network
● Operators sell custom APNs to customers

○ Which are then separated from other mobile clients and have custom IP
address spaces

○ And terminate at a different point

Custom APNs

● Access to an APN can be enforced by classical credentials, by IMSI
or by IMEI

● Various companies use custom APNs to ensure that certain
services are only exposed to certain clients
○ I.e. backend systems for the uplinks in cars

● Our network can use custom APNs or just let every device connect
to the same one
○ Simply accept all authentication

● If we need to allow traffic to a certain backend, we might need
some magic
○ We can extract the SIM card from the victim, place it in a phone, let the phone

dial into the network, with the correct SIM and IMSI and then forward traffic
through there

Coping with Custom APNs

● By default a cellular client will not leave it’s network, when it has
proper service

● To force it to connect to the attacker’s network, it has to be the
only one or the strongest one after a disconnected
○ For a moving vehicle or a device on a person, attacking it in a building or in a

tunnel can be very efficient
● This can either be triggered by protocol based attacks or by

aggressively jamming away other signals

Real World Attacks

A Few Examples

Gate / Garage Opener

● Rtu5024
○ ~25€ @Amazon

● Remote switch / relay with SMS and call
control
○ For gates / garage doors

● For call control a list of numbers can be
configured
○ When there is an incoming call, the relay is

triggered

SMS Control

● An SMS with “xxxxCC” will enable the
relay, “xxxxDD” will disable it
○ Here xxxx is a 4 digit PIN

● The PIN can be set by sending “xxxxPyyyy”
○ Where yyyy is the new 4 digit PIN

SMS Control

● So all we need to do, is send 10k SMS

Sending 10k SMS
import telnetlib
import time

Host="127.0.0.1"
Port="4242"

tn = telnetlib.Telnet(Host,Port)

tn.write("subscriber id 1 sms sender id 1 send starting test\n")

pins=["%04d" % x for x in range(10000)]
for pin in pins:
 cmd = "subscriber id 2 sms sender id 1 send " + pin + "\n"
 print cmd
 tn.write(cmd)
 time.sleep(1)
tn.write("exit")
tn.write("exit")

Vehicle Immobilizer

● Cheap device from Amazon,
○ One of many

● Includes a GSM modem, GPS receiver,
microphone & speaker and a relay to be
connected to power supply of the fuel
pump

● Can be controlled via app or webinterface
○ Some asian cloud service

Vehicle Immobilizer

● Initial setup is performed by entering IMEI
into webinterface
○ IMEIs seem to iterated (as so often)
○ Some people seem to have provisioned their

tracker into the demon account . . .

● Web/App can then be used to locate the
vehicle, configure alarms based on speed /
geo fencing, tap into the car (microphone)

Vehicle Immobilizer

● Communication is done via a raw TCP stream
○ Different characters for different different commands

● No encryption / authentication except for the IMEI
● Thus vehicle location can easily be spoofed
● And..., the immobilizing feature. . .

Home Alarm System

● 100€ Home Alarm System from an
electronics store
○ Comes with remote control, movement sensors,

window switches

● Can be controlled via SMS and also sends
out alerts via SMS

● Authentication is performed based on the
source phone number

Home Alarm System

● While it’s hard to spoof a call on a public
network, it’s easy to do so on a private one

● Simply change the Extension in the HLR
○ Or configure applicable phone in the SIP config

● Only open question is:
○ If an attacker goes for a specific target and alarm

system, is the victim’s phone number a secret?

Solar Power Control Box

● Device for uploading usage statistics of a home solar system
○ And also doing some configuration and debugging

● Nicely running Windows CE
○ Old, but still in use

● Transmits data to a cloud backend
● Also allows remote access

Solar Power Control Box

● Remote access is….TELNET
● Device simply exposes a local telnet port via the cellular network

○ Which can sometimes receive a public IP address
○ Or is often at least reachable by other clients in the same APN

● Some of these devices have default passwords
○ Which often have large similarities to the device’s manufacturer

Now what?
Are we all lost?

What can be done better?

Cellular Network Security

● In 2G there is no way for the client to authenticate the network
○ Only the other way round

● Thus the client will connect to any network it finds suitable
○ A bit like a public WiFi, just MCC + MNC instead of the SSID

● In 3G and 4G, the client can authenticate the network
○ But there are a few flaws

● 5G is currently being researched

● Most cellular modems are able to fallback to 2G
○ I.e. when there is no other connectivity

● There also are various network and modem / baseband based
vulnerabilities which can be used to trigger a downgrade to 2G

● Thus attacker will always be able to exploit the weaknesses of 2G
networks

2G, 2G, 2G!

IP, IP & IP

● IP is IP, no matter whether it comes via cable, WiFi or cellular
● As long the cellular interface can be attacked, the client has to be

able to protect itself
○ I.e. Application layer encryption

● Still many IoT devices don’t use SSL

● Modern developers should understand IP
○ Even though many player on the IoT market are re-implementing 15 year old

vulns

Convenience

● Most simple and small products are developed with convenience
in mind
○ Send a simple SMS to open a gate
○ Just perform a call to open a gate

● Sometimes security and convenience can be incompatible
○ You could transmit proper authentication via DTMF
○ Use some signed and encrypted token in the SMS

● It’s just not viable

● Many products work out off the box
○ Insert SIM card, send SMS, done

● This yet again makes life easier for the user, but also implies a lack
of proper security

● While a pairing / provisioning procedure might not be very nice, it
ensures that the user applies a baseline of security measures

Default Configuration

● While creating an app might be overhead, it allows the
manufacturer the implementation of extra security measures
○ This doesn’t mean you can rely on an app. There are some that just send the

insecure SMS
● One could i.e. still use SMS, but sign the payload

○ Or encrypt it

App Control

● There obviously are some very secure and nicely implemented
solutions
○ With proper encryption and authentication

● Some commercial solutions simply wrap everything into a VPN
tunnel
○ Problem solved

Not Everything is Bad

● When testing a new device, it is crucial, to also verify the security
of the cellular interface
○ Especially when working with proprietary protocols
○ Don’t rely on self implemented measures, have them tested

● Ensure that your partner/supplier is actually able to test these
interfaces
○ It’s sadly still a rather rare set of skills

Cellular Pentesting

brian@security-bits.de ~~ www.security-bits.de ~~ @BadgeWizard

Thanks for your time
Questions?

